Figure S3. Effect of ActD on the distribution of pentamer GFP\textsubscript{5} and RFP-fibrillarin in the nucleus. HeLa cells coexpressing GFP\textsubscript{5} as a diffusional probe and nucleolar protein of RFP-Fib as a nucleolar marker, were imaged before (a) or after treatment of Act D (4\mu g/ml) in 2 h (b). Nucleolar reorganization and segregation represented by largely different fluorescent intensity of RFP-Fib was observed after ActD treatment (arrows). Scale bar; 2\mu m. (c-e) The nucleus of a HeLa cell coexpressing GFP\textsubscript{5} and RFP-Fib shown in (b) was measured by FCS after ActD treatment during 2 hr. The averaged fluorescence intensities over 10 s detected at a position of the nucleopasm (c) and at two positions of a nucleolus (d, e). No1 and No2 represent two nucleolar positions of low and high RFP-Fib fluorescence shown in (b). Corresponding normalized fluorescence correlation functions were shown in Fig. 4a. Np and No stand for the nucleoplasm and the nucleolus, respectively. (f) The fluorescence correlation functions corresponding to (c, black), (d, blue), and (e, red) were shown. (g) Normalized fluorescence correlation functions (open circle) of GFP\textsubscript{1} in the nucleolus of HeLa cell before (black) or 2 hr after ActD treatment (red) were shown. It is notice that the functions of GFP\textsubscript{1} in the nucleoli were well fitted a one-component model (solid line) regardless of inhibitor treatment. For comparison of mobility change, the functions were normalized into the same amplitude of G(0)=2.