Are you an exceptional candidate who can provide leadership to one of the preeminent Institutes of the National Institutes of Health?

This position offers a unique opportunity to serve as the second-in-command of the National Institute of General Medical Sciences (NIGMS) with responsibility for the execution and management of the daily operations in support of NIGMS' strategic vision and mission. The Deputy Director works collaboratively across the NIH throughout the federal government and with other key stakeholders and organizations to further the advancement of NIGMS' mission and objectives. He/she serves as the ambassador and spokesperson for the Institute, communicating the NIGMS' position and incorporating the views/needs of key stakeholders into Institute plans and initiatives. The Deputy Director facilitates the identification and development of future leaders through mentoring programs, continuous development of skills and expertise, and recognition of achievements. In addition, he/she serves as a role model to the rest of the Institute, managing people and financial resources with integrity and fairness, while maintaining the Institute's policies and priorities.

We are looking for applicants with a commitment to scientific excellence and the energy, enthusiasm and innovative thinking necessary to lead a dynamic and diverse organization. Applicants must possess an M.D. and/or Ph.D. and possess senior-level scientific research experience and outstanding scientific knowledge of research programs in one or more scientific areas related to cell biology, biophysics, genetics, developmental biology, pharmacology, physiology, biological chemistry, biomedical technology, bioinformatics, and/or computational biology. They should be known and respected within their profession, both nationally and internationally, as individuals of outstanding scientific competence. Applicants must also have demonstrated experience in setting, planning, implementing, and analyzing program objectives and priorities. He/she should have the demonstrated ability to manage financial and human resources, lead a research program involving extensive internal and external collaborations, as well as experience managing programs related to the creation of a highly skilled and diverse biomedical research workforce.

The successful candidate for this position will be appointed at a salary commensurate with experience and accomplishments, and full Federal benefits, including leave, health and life insurance, retirement and savings plan (401K equivalent).

DHHS AND NIH ARE EQUAL OPPORTUNITY EMPLOYERS

If you are ready for an exciting leadership opportunity, please see the detailed vacancy announcement for mandatory qualifications requirements and application procedures at http://www.jobs.nih.gov/ (under Executive Jobs). Applications are due by May 27, 2014.

For more information, contact us at: subscriptions@faseb.org / 301.634.7028

*Visit www.fasebj.org/subscriptions for tier definitions and additional tier pricing. Institutional pricing is for a single-site only. Multi-site price quotes are provided by the publisher on request.
**Students who want print & online must pay the Member price.
Lipid oxidation is now thought to be an initiating and sustaining event in atherogenesis. Oxidatively fragmented phospholipids, namely 1-palmitoyl-2-glutaroyl-sn-glycero-3-phosphocholine (PGPC) and 1-palmitoyl-2-(5-oxovaleryl)-sn-glycero-3-phosphocholine (POVPC), present in minimally modified LDL and atherosclerotic lesions, have been reported to elicit a wide range of pathophysiological responses in the cells of the vascular wall. Nevertheless, the question of their potential sites of action and their primary molecular targets remains open. To address this issue, a series of fluorescently labeled analogs, which differ with regard to structure and binding site of the fluorophore, were synthesized and used as tools for studying the uptake, intracellular stability, and distribution of PGPC and POVPC in vascular smooth muscle cells (VSMCs). We demonstrate that in accordance with their lysophospholipid-like structure, these highly similar molecules transferred rapidly either from aqueous phospholipid dispersions or preloaded native LDL into VSMCs, producing disparate fluorescence patterns irrespective of the attached fluorophore. PGPC derivatives were translocated to the lysosomes. In sharp contrast, POVPC analogs were initially captured in the plasma membrane, most likely in consequence of the formation of covalent adducts with free amino and sulphydryl groups of proteins and phospholipids. LDL internalization is not required for cellular lipid uptake. Collectively, our data provide evidence that oxidized phospholipids, owing to their high exchangeability between lipoproteins and cell membranes, may act within a short time on different cellular sites in VSMCs and affect various lipid and protein components through physical or chemical interactions, which might then serve as starting points for intracellular signaling.